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The stability of core-annular flow (CAF) in pipes is analysed using the linear theory 
of stability. Attention is confined to the potentially stable case of lubricated 
pipelining with the less viscous liquid, say water, in the annulus. The effects of 
surface tension and density are included, but gravity is excluded. We find upper and 
lower branches of the neutral curve in a Reynolds number (R) us. wavenumber (a) 
plane. A window of parameters is identified in which CAF is stable to small 
disturbances. When R is below the lower critical value, CAF is destabilized by surface 
tension and long waves break up into slugs and bubbles. The sizes of slugs and 
bubbles of oil in water observed by Charles, Govier & Hodgson (1961) are given by 
the wavelength of the fastest growing long wave. This long-wave instability is a 
capillary instability, modified by shear, which reduces to Rayleigh’s instability in the 
appropriate limit. At higher R, the capillary instability is stabilized by shear. At yet 
higher R, above the upper critical value, the flow is unstable to generally shorter 
waves which leads to emulsification, water droplets in oil. The theory agrees with 
experiments. The analysis seems to be applicable to the design of lubricated 
pipelines; for example, there is an optimum viscosity ratio for stability, greater 
stability can be obtained by using heavy liquid as a lubricant when the flow is 
unstable to capillary modes on the lower branch and by using light liquids when the 
flow is unstable to emulsifying disturbances on the upper branch. 

1. Introduction 
There is a strong tendency for two fluids to arrange themselves so that the low- 

viscosity constituent is in the region of high shear (Joseph, Nguyen & Beavers 1984). 
This gives rise to a kind of gift of nature in which the lubricated flows are stable, and 
it opens up very interesting possibilities for technological applications in which one 
fluid is used to lubricate another. 

We can imagine that it may be possible to introduce a beneficial effect in any flow 
of very viscous liquid important in applications by introducing small amounts of 
lubricating fluid. Nature’s gift is evidently such that the lubricating fluid will migrate 
to the right places so as to do the desired job. 

There are significant reserves of heavy viscous crude oils in the United States, 
Canada, Venzuela and Europe. Heavy crudes may have viscosities of 1000 P at room 
temperature. These viscous crudes cannot be transported by the usual pipeline 
methods. It is customary to reduce the viscosity of the oil either through the addition 
of a hydrocarbon diluent or through the installation of heating equipment a t  short 
intervals along the pipeline. The former method can only be used in the unusual case 
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in which there is an abundant supply of light oil in the same region as the heavy oil; 
heating is inconvenient and costly. 

Another method which has been proposed to facilitate the transport of viscous 
crudes is the addition of an immiscible lubricating liquid, usually water, Experiments 
to examine this possibility have been carried out by Russell & Charles (1959), 
Russell, Hodgson & Govier (1959), Charles, Govier & Hodgson (1961), Gemmell & 
Epstein (1962) and Charles &, Lilleleht (1966). Oliemans & Ooms (1986) have written 
a comprehensive review of pipe flows of oil and water, theory and experiment, prior 
to 1984. 

Various arrangements of the oil and water occur in the aforementioned 
experiments. This type of non-uniqueness is typical of flowing bicomponent fluids. 
The arrangements that appear in horizontal pipes are : ( a )  stratified flow with heavy 
fluid below ; (b )  concentric oil in water (core-annular) flow ; (c) water drops in oil ; (d ) 
oil drops (bubbles) in water (these include large bubbles and slugs of oil lubricated 
by water). 

The measured pressure drops indicated that the addition of water can greatly reduce the 
pressure gradient. There is a powerful tendency for the water to migrate to the pipe 
walls where the shearing is greatest, lubricating the flow. 

It was found that the coreannular flow had the greatest volume flux for a given 
pressure drop among all of the realized rearrangements. The pressure drop over the 
pipe could be even smaller than the pressure drop in water alone a t  the same value 
of the volume flux. The lubricating water layer was 10-40% of the pipe diameter. 
The power requirements for moving the small amount of water in coreannular flow 
is negligible. 

Under widely applicable conditions, thin films of all kinds of lubricating layers are 
stable. Theoretical results, using standard methods of linearized stability theory, are 
listed below. Yih (1967) studied the stability of plane Couette flow in two layers 
separated by a planar interface with respect to long waves. He suppressed the effects 
of gravity and density differences and focused his attention on the viscosity 
difference and the volume ratio. He found that some of the these flows are stable and 
others unstable. Flows with a small layer of less viscous fluid on one wall, which we 
call lubricating flows, are stable. Hooper & Boyd (1983) considered the stability of 
Couette flow of two fluids separated by a plane layer in an infinite region, without 
boundaries. They find that the flow with a flat free surface is always unstable to very 
short waves when the surface tension is neglected. Surface tension stabilizes the 
shortest waves. Renardy (1985) and Hooper & Boyd (1987) studied the stability of 
layered Couette flow to disturbances of arbitrary wavelength. They show that the 
only stable flow with a flat interface at small Reynolds numbers, tending to zero, has 
a finite surface tension and is a lubricating flow. 

Hickox (1971) studied the stability of Poiseuille flow of two fluids when the less 
viscous fluid is centrally located. He showed that all such flows are unstable. Joseph, 
Renardy & Renardy 1983, 1984 (hereinafter J R R  1983 and J R R  1984 respectively) 
studied the stability of Poiseuille flow of two fluids when the more viscous fluid is 
centrally located. They found this flow, with an interface of constant radius, is stable 
provided that the layer of less viscous fluid on the wall of the pipe is small. Than, 
Rosso & Joseph (1987) studied the analogous problem for plane Poiseuille flow, 
restricting perturbations to long waves. They found that the flows with thin fluid 
inside were unstable and that the lubricating flows with thick fluid inside were 
always stable, independent of the volume ratio. Y. Renardy & Joseph (1985) studied 
the stability of rotating Couette flow in two circular layers. Again, the only stable 
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FIGURE 1. The sketches reproduced above are taken from the paper by Charles, Govier & 
Hodgson (1961). The experiments are discussed and the results compared with theory in $13, 

flows with a cylindrically perfect interface are the lubricating flows, with a thin layer 
of less viscous liquid on one of the cylinders. The stabilizing effect of lubrication can 
be strong enough to overcome centrifuging when the lubricating fluid on the inner 
cylinder is heavy. 

In this paper, we study the stability of core-annular flow with viscous fluid in the 
core using the linear theory of stability. Our analysis goes beyond that given by 
JRR, because the effects of surface tension and density differences, neglecting 
gravity, are considered. Surface tension is very important. It is not possible to derive 
a theory without it that could be used in the design and control of lubricated-pipeline 
technologies. 

The results computed here, taken together with that given in JRR, appear to be 
in quantitabive agreement with the results of experiments of Charles, Govier & 
Hodgson (1961, hereinafter referred to as CGH) on bicomponent flow of water and 
oil-carbon tetrachloride solutions density matched with water. Gravity is made 
negligible by density matching, so that their experiments and our analysis are 
compatible. Their results are summarized in figure 1 and discussed in 5 13. For now, 
it will suffice to note that (a )  there is a minimum speed, observed in experiments, but 
not previously treated by analysis, below which core-annular flow is unstable and 
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gives way to oil slugs in water; and ( b )  there is a maximum speed, observed in 
experiments, but not previously treated by analysis, above which core-annular flow 
is replaced by emulsions of water in oil. 

The conditions of the experiments of CGH are not those of interest in lubricated 
pipelining. In pipelines one usually sees a form of wavy core flow when the oil 
viscosity is greater than 500 CP. In terms of the parameters used in this paper the 
viscosity ratio m in practice is less than 0.002, much smaller than the value of 0.0532 
for the experiments of CGH. Moreover, in some practical applications the density 
difference between oil and water causes the oil to ride high in the pipe and a t  low 
speeds the oil may rise up and seize the wall, leading to a failure of lubrication (see 
Oliemans & Ooms 1986 for a photograph and discussions of the effects of gravity). 
Fortunately the oil core need not touch the upper wall. A lubricating layer can 
persist. The exact hydrodynamics, which maintain the lubrication layer a t  the top of 
the pipe, is not understood. Oliemans & Ooms think that a lubrication effect 
associated with ripples is important. Oliemans (1986) has developed a lubricating- 
film model for core-annular flow which agrees with experiments in some details and 
disagrees in others. Evidently, the stronger shear in the small gap a t  the top of the 
pipe stabilizes the big capillary waves which are evident in the large gap a t  the 
bottom of the pipe. M. Renardy & Joseph 1986 have shown that travelling ripples 
will occur as a bifurcation of core annular flow so that wavy core flow which is 
observed in pipelines may arise as a subcritical bifurcation of core-annular flow. 

We have carried out experiments on water-lubricated transport of SAE 30 motor 
oil and number two fuel oil and on 30% and 40% dispersions of 70 pm coal in these 
two oils. The oils are usually well lubricated if the pressure gradient is not too small, 
even though the oil rides high in the pipe due to gravity. In  generad, we get lubricated 
flows, though not concentric core-annular flow, even when the oil at the top seizes 
the wall. In these cases the oil in the core is still lubricated by a film of water which 
lies underneath the oil on the top of the pipe and the oil core below it. The effects of 
gravity are not so serious as to impede successful lubrication in our small pipes, but 
these effects could be more serious in pipes of larger diameter. There are some 
interesting situations in which the density of the oil and water are nearly the same, 
so that the gravity effects are greatly diminished. This is the case, for example, with 
heavy oil extracted from the Alberta oil sands and with the dispersions of 40% 
coal in SAE 30 motor used in our experiments. The most serious problem for the 
technology of water-lubricated pipelining associated with stratification due to 
gravity is start-up from rest. The effects of gravity under transient and steady 
conditions have not yet been treated in a theoretically satisfactory manner. 

In this paper we confine our attention to parameter values in the range of the 
experiments of CGH. The second type of failure of lubricated pipelining, 
emulsification of water in oil, already occurs in these experiments and is apparently 
correlated with the higher-Reynolds-number instability identified in our linear 
theory. In a second paper (Part 2 of this paper, by H. Hu & D. D. Joseph), we 
implemented a finite-element program with an adaptive mesh in the boundary layer 
at  the wall. The finite-element calculation agrees perfectly with the pseudospectral 
code used in the present calculation but it also works well a t  the small values of 
m < 0.002 characteristic of field practice. We compared the results of our finite- 
element calculation with field data provided from experiments in 6 in. diameter 
pipes. The linear theory predicted wavy core flow when the oil viscosity was greater 
than a critical one, with emulsification of water into oil for smaller viscosities. These 
predictions agree with the field data. 
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2. The equations and basic flow 
Two liquids are flowing down a pipe of inner radius R,. The interface between the 

two liquids is given by r = R(8, x, t )  where ( r ,  8, x) are cylindrical coordinates and 
l? = (U,  p, W )  are the corresponding components of velocity. The region 0 < r < R(8, 
x, t) is occupied by the first liquid with viscosity and density ,ul and p1 and the second 
liquid (,az and p,) is located in R(8, x, t )  < r < R,. The pipe axis is at r = 0 and the pipe 
is infinitely long - co < x < m. The mean value of R over 8,0 < 8 < 27r is R, = 
R(O,x,t), a constant fixed by the prescribed volumes of each of the two liquids, 
independent of t. 

The equations of motion, gravity neglected, are 

dl? 
dt 

pl- = - V P + p 1 V 2 0 ,  div 0 = 0, 

where 1 = 1 when 0 < r < R and 1 = 2 when R < r < R,, 
1 

U = Q  on r = R z :  

and 0 is bounded at r = 0. The equations on the interface are 

is the jump in 0 over r = R, and 

-([PI + 2 H T )  n + [2pD[ a]. n = 0, (2 .5 )  

where D[m = +(Vl?+Vl?'), 2H is the sum of the principal curvatures, T is the 
coefficient of surface tension, n = n,, is the normal to r-R = 0 from liquid 1 to 2 .  

We shall study the stability of core-annular flow 

where V P  = - F, F > 0 is the magnitude of the constant pressure gradient, and 

To study the stability and bifurcation of core-annular flow, it is necessary to 
introduce an extended core-annular flow, where in (2.7) we write 0 < r < R(8, x, t )  
and R(8, x, t) < r < R,, respectively. 
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3. Perturbation equations 
We now perturb extended core-annular flow 

O= (u ,v ,  W+W),  F = P + p ,  R = R,+S(@,x,t) (3.1) 

and consider the linearized equations for (u, v, w,p, 6 ) .  

where (p l ,p l )  = (pl,p,) in r < R, and (p2,p2) in r > R, and W' = dW/dr. Moreover, 

u = v = w = O  a t  r = R z ,  (3.3) 

u,  v, w are bounded at r = 0 and satisfy other conditions to be stated later. On the 
interface at r = R,, we find that 

u = W6,+6,, IF= 0, (3.4a) 

[u] = [v] = 0, (3.4b) 

(3.4c) 

(3 .4d )  

(3.4e) 

and nwn s+ ~wn = 0. (3.5) 

Equation (3.5) shows that w is not continuous across r = R,, and it can produce 
instability. We can eliminate 6 = - [w]/[W'] from our problem. 

4. Dimensionless equations and parameters 

radius R,, velocity is scaled with the centreline velocity 
We shall now make our equations dimensionless. Lengths are scaled with the mean 

W, = F{R! (P~  -P,) + R M / ~ P ~ P ~  

and time with R,/Wo. After introducing these scales, we find equations in 
dimensionless variables. We shall use the same symbols for dimensional and 
dimensionless variables. 

The differential equations satisfied by the dimensionless u, v, w,  p are of the same 
form as (3.2) with p1 = 1 and puI replaced by l / R l  where 

R, = p1 WoRJp1, 1 = 192. (4.1) 
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A dimensionless function W(r) also appears in these equations and is given by 

1 - m r 2 / ( a 2 + m - 1 ) ,  

( a 2 - r z ) / ( a 2 + m - 1 ) ,  

0 Q r Q 1 

1 < r Q a, 
W ( r )  = 

where m = Y2/Pl 1 

is the viscosity ratio, and a = R2/R,  2 1 

is the dimensionless radius of the outer cylinder. The ratio of the volume of the liquid 
outside to the volume of liquid is a2 - 1. The boundary conditions (3.3) are required 
to hold a t  r = a. Equation (4.2) shows that W(r)  is continuous across r = 1, 

W(1) = ( a 2 - l ) / ( a 2 + m - l ) ,  (4.3) 

but, because the shear stress is continuous, the derivatives of Ware different on sides 
1 and 2 of r = 1 

The dimensionless interface is a t  r = 1 .  Equations (3.4a, b)  and (3.5) are unchanged 
in form. Equations (3.4~-e) take the following form in dimensionless variables : 

where p i  is scaled by pi q, 

is a density ratio and 

Pi 
PL 

ci = - >  

(4.5) 

(4.7) 

(4.9) 

is the dimensionless surface tension. 
The parameter S has been used in all previous studies of instability of two fluids, 

but it is not a good parameter because it depends strongly on the velocity or the rate 
of shear in the basic flow. It is better to write 

(4.10) 

where J is a surface-tension parameter introduced by Chandrasekhar (1961) in his 
study of capillary instability of jets of viscous liquid in air. 

For core-annular flow the parameter J*  = TR,/p, v; is more convenient than J 
because 

J* = aJ (4.11) 

is given when the oil and pipe radius are known. 

[w, of which five are independent, R,/R, = m/c2, where m = ,u2/,ul. 
The problem is characterized by six dimensionless parameters: m, a ,  g2, J ,  [w, and 



330 L. Preziosi, K.  Chen and D. D. Joseph 

5. Normal modes 
We replace [u,, wL, w,,p,] (r,  8, x, t )  and a(@, x, t) with amplitude functions [iuL, v,, wl, 

p,] ( r )  and an amplitude constant 6 times exp [in8 + ia(x - Ct)] in the usual way. The 
equation 

u( l ,8 ,2 , t )  = S,+W(l)S, 

then reduces to  u(1) = .(W(l)-C)6, (5.1) 
giving S. In each of the two regions, corresponding to 1 = l(0 < r < 1 )  and 1 = 
2(1 < r < a), we get 

u n  
r r  u’+-+-w+aW = 0, (5.2) 

(5.4) 

The boundary values of the amplitude functions are such that 

u ( a )  = w(a) = w(a) = 0, u(0), w(0), w(O),p(O) finite. (5.6) 

On the interface T = 1, we have 
[u] = [w] = 0, 

~W~U(1)+a(W(l)-C)[w~ = 0, 

[;(wkzu)] = 0, 

-(w’-w-nu) = 0, k n (5.10) 

(5.11) 
a( W( 1) - C) * 

We eliminated p from the system (5.2)-(5.11). Equations (5.3) and (5.4) are 
reduced to 

where (R,, W,) correspond to regions 1 and 2. 
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We eliminate [{p] from the normal-stress condition (5.11) by equating to [Cp] 
obtained by evaluating (5.5) a t  r = 1. After some simplifications, using the other 
interface conditions, we get 

The governing equations are (5.2), (5.6)-(5.10), (5.12), (5.13) and (5.14). 
The conditions (5.6) at the origin may be stated more precisely using the method 

of Frobenius. Conditions may also be inferred from the fact that u(r, 8, x, t )  is single 
valued, hence independent of 8 a t  r = 0 (see Joseph 1976, p. 23). We may decompose 
u into an axial part e, w and a tangential part e, ut = e,u + e, w. Of course, w(0, x) ein9 
is independent of 8 when n = 0, or when n + 0 and w(0,x)  = 0. The tangential 
velocity 

u, = cos 8[iu(O, x )  cine] -sin 8[w(o, x) eins] 

is independent of 8 when 

_ -  aut - -f(nu+w)cose+isinB(u+nw)}e'nB = 0. 
a8 

When n =!= 1, ut is zero: then, u(0, x) = v(0, x) = 0. When n = 1, i t  is enough to have 
u ( O ) + w ( O )  = 0. The tangential component U, need not vanish when n = 1. Some 
further conditions a t  r = 0 can be deduced from (5.2) at  r = 0, using the results just 
obtained, 

lim aw + u' +- = aw(0) + 2u'(O) + nw'(0) = 0. 
r-0 i u+nvl r 

Summarizing our results, 

n = 0 : 

n = 1 : 

n > 2 :  

u(0) = v(0) = azu(0) + 2u'(O) = 0, 

u(0) +w(O) = w(0) = 0, 

u(0) = w(0) = w(0) = 0. 

(5.15) 1 
We define system I for u, v and w to be (5.2), (5.7)-(5.10), (5.12), (5.13) and (5.14). 

We also worked with the system I1 of equations for u and w alone which can be 
derived from system I by using (5.2) to eliminate w. System I1 is defined by the 
condition 

u(a)  = v(a) = u'(a) = 0 (5.16a, b,  c )  

and the following equations in the two regions 1 = 1,2 inside and outside the interface 
at r =  1: 

def 
fi = iaRz(&(r)-C)rz, 

r4uN"+ ~ T ~ U ' "  - [ f i  + 2a2r2 + n2 + 31 rzu"- [fi + 2a2r2 - n2 - 31 ru' + [fz(azrr" + 1) 

+ a4r4 + (nz + 2) a2r2 + 3%' - 31 u + n~~21"' - 2nr2v" 

- [fi + a2r2 + n2 - 31 nrw' + [fi - iaR, 

+ 3(a2r2 + n2 - i ) ]  nw = 0, 

r3 

(5.17) 
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nr3u"' + 2nr2n" - [fi + a2r2 + n2 + 11 nru' - [ f ,  - iaR, r3 + 3a2r2 + n2 - 11 nu 

+ (a%' + n2) r2wf'+ (a2rz - n2) rw' - [ f , (a2r2 + n2) + a4r4 

+ (2n2 + 1) a2r2 +n2(n2 - i)]  w = 0. (5.18) 

At the interface r = 1, we have 

(5.19a, b )  

(5.20) 

(5.21) 

ul; +u; + (a2 +n2 - 1)  ( 1  -m)  u-mui-mu; = 0, (5 .22)  

u;" + 24'- ( fl + 3a2 + n2 + 1 )  u; +nw;-nvi 

-mmu~-2mu~+[fl~,+m(3a2+n2+ 1 ) ] 4  

+ [ f l K 2  - 1 ) - iaR, w, ( 1) (6, - m) + (m - 1 ) ( a2 + n2 - 1 )] u 

-nmw~+nmw; + [fi(c2- 1 )  + (m- 1) (a2+n2- I)] nw 

ia J + ( a 2 + n 2 - l ) u  = 0. 
&(W1)-G) 

Equation (5.23) may be put into a more convenient form, using (5.201, 

u;" + 224; - (3a2 + n2 + 1 )  u; + nwl; - nvi -mu: - 2mu; + {fi(c, - 1) + m(3a2 

+ n2 + 1 )} u; + {fl( g2 - 1 )  - i d l (  g2 - i ) W,( 1) + (m - 1)  (a2 

+ n2 - 1)) u2 + (fl(Q- 1)  + (m- 1)  (a2 + n2- 1 ) )  nv, - nmvi  

+ nmv; + u2 = 0. 
iaJ(o12 - n2 - 1)  

R l ( W 1 )  - C) 

(5.23) 

(5.24) 

In the axisymmetric case, when n = 0, the equations for u and w decouple and the 
unstable eigenvalues are determined from the equations for u( r ) .  The v-equation 
gives rise only to stable eigenvalues. Most of the results given in this paper are 
computed for the case of matched density 5, = 1 and axisymmetric disturbances, 
n = 0. I n  this case, u is governed by 

r 4 ~ " " + 2 r 3 u " ' - [ f , + 2 a 2 r 2 + 3 ] r 2 u " - [ f , + 2 ~ 2 r 2 - 3 ] r u ' + [ f , ( a 2 r 2 +  1 )  

+ a4r4 + 2a2r2 - 31 u = 0, (5 .25)  

where u,(O) = 0 and ul (r )  has bounded derivatives at r = 0, 

u,(a) = u;(a) = 0, 
and, a t  the interface, r = 1 ,  

u1= u2, 

( m - l ) W 2 ( 1 ) u - ( W ( l ) - C )  (u;-u;) = 0, 

u;+u;+(a2-1) (l-m)u-mu;-mu; = 0, 

U: + 2 4  - (3a2 + 1 )  U ;  -mu: - 2 m 4  +m(3a2 + 1)  U ;  

(5.26) 

( 5 . 2 7 ~ )  

iaJ(a2- 1 )  
+(m-1) (a2-1 )u2+ u2 = 0. (5 .276)  

&( w( 1 ) - C )  
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6. Numerical method 
We used a pseudospectral method to integrate system I .  This is a collocation method 
using Chebyshev polynomials which is particularly suited to ODE’S with variable 
coefficients. Following Orszag & Kells (1980), we expand (u, v, w) ( r )  in terms of 

(6.1) 

where N is a truncation number. To use this representation, we must map each of the 
regions occupied by the two fluids into [ - 1,1], ri + yi, i = 1,2,  

Tk(r) = cos (karccos T ) ,  k = 0,1,2, . . . , N ,  

(1 -ut)  yi+ 1 +a, 
2 

rt = 9 

(%a,) = (0, a).  (6.3) 
The interface r1 = 1 and r2 = 1 maps into itself, yr  = 1. In each region i = 1,2,  we 
define interpolation functions of y 

N 

[INu,INv,INw] = c [ZikrBk,Zi’klG(y). (6.6) 
k-0 

Collocation points are 
7C.i yj = cos-, j = O,l, ..., N, 
N 

where j = N is a boundary point and j = 0 an interface point. In the core, the 
centreline conditions are counted as a boundary point. The interpolation functions 
are determined when the coefficients (dk ,  B k ,  6,) are known. The N+ 1 coefficients 
Zi, can be determined by u(r j )  at points of collocation by requiring that 

I N  u(!!j’) = u ( r j ) .  (6.6) 

The coefficients B, and 8, can be obtained in the same way. We can find all the 
coefficients if we can determine the 3(N+ 1) values (u, z1, w) ( r j )  at the points of 
collocation. The required values are generated numerically from system I. This 
system is to be satisfied a t  points of collocation. The derivatives in the differential 
equation at points of collocation can be expressed in terms of the functions a t  points 
of collocation through the derivative formula 

where 

and 

- c, = co = 2, 

q =  1, l < j < N - 1  

Dp = (DJP. 

(6.7) 
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There are 3(N- 1 )  equations for u, v, w arising from (5.2), (5.12) and (5.13) a t  interior 
points of collocation in the annulus and 3(N-  1 )  equations in the core. There are three 
boundary conditions a t  the wall, three centreline conditions in the core and six 
interface conditions, hence 3(N+ 1) in each region and 6(N+ 1 )  in all. The 6N+6 
linear equations in 6N+6 unknowns form a linear eigenvalue problem of the type 

(A+cB).x = 0. (6.9) 

This eigenvalue problem was solved using the IMSL routine EIGZC. 
We test for convergence by increasing the truncation number N. Converged 

eigenvalues C(N) do not change as N is increased. There are spurious eigenvalues in 
the discretized system which do not converge. We find satisfactory convergence 
when N 2 14. 

We compared our numerical results based on collocation methods with those of 
J R R  (1983), which are based on Galerkin methods. We find good agreement in all 
cases. To compare our results with theirs, we put the density ratio <, = p2/p1 to one, 
S = 0. Their Reynolds number is Re and their complex wave speed is designated as 
&, related to our R, and C' by 

a3 a 2 + m - l  
Re = R l ,  c;, = C, (a2+m-1)m 

(6.10) 

where m = p2/pl < 1.  The m used by J R R  is ,ul/,u2 > 1. We get agreement up to 
fourth-place accuracy even when the truncation number N = 14. The agreement is 
better when the azimuthal periodicity number n is small; the error is always within 
the bounds allowed by JRR.  The results just cited imply that our results also agree 
with stability results for one fluid presented by Salwen & Grosch (1972) and Salwen, 
Cotton & Grosch (1980), which J R R  (1983) reproduced. 

J R R  (1983) noticed some difficulties in achieving convergence a t  low Reynolds 
numbers using their Galerkin method. These problems seem not to arise when a 
collocation method is used. 

Our numerical results for the longest waves agree perfectly with analytical results 
to be derived in $8. The numerical results for short waves are in agreement with those 
computed by Hooper & Boyd (1983, 1987) when account is taken of the difference 
between their problem and ours. 

7. Axisymmetric and non-axisymmetric disturbances 
Our numerical codes work well for non-axisymmetric as well as axisymmetric 

disturbances. However, we were unable to find situations in which instability 
definitely occurs for n =k 0, with stability for n = 0. For this and other reasons, which 
we shall discuss below, we have presented results only for n = 0. 

Some numerical results for a few discrete values of a were presented by JRR (1983) 
and more results by J R R  (1984). In their work, density differences and surface 
tension are neglected and 5, = 1. Their computation showed that in most cases of 
instability with RJR, < 0.7, it is the axisymmetric mode which is most unstable. 
However, a t  the critical value RJR, = 0.7, they computed growth rates as a function 
of pl/,u2 for Re = 100, uR, = 1 ( R ,  = 26.42, a = 1.43, a = 0.7) and found that the 
growth rates associated with n = 5 were positive and the growth rates for n = 0 were 
negative. This case then appears to be stable for n = 0 and unstable for n = 5 ,  but 
appearances are illusory in the following sense. We computed growth rates 
corresponding to the parameters in figure 4 of J R R  (1984) for n = 5 and n = 0, and 
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FIQURE 2.  Growth rate aq = a Im C vs. wavenumber a for a = 1.43, m = 0.5, R, = 26.42, J = 0. 
The addition of surface tension J > 0 should stabilize the curve with azimuthal wavenumber 
A'= 5. 

for all values of a we found that the highest growth rates are achieved for the 
axisymmetric mode (see figure 2). The most unstable mode for the parameters used 
in figure 5 of JRR (1984) is axisymmetric. 

JRR (1984) also found that a t  any radius ratio, high azimuthal modes are 
unstable, but the magnitude of Im (C) decreases asymptotically with mode number. 
This instability of high azimuthal wavenumber and also to large a is a manifestation 
of the short-wave instability of Hooper & Boyd (1983) and occurs only when surface 
tension is zero. 

We did numerical studies with different n and always found that n = 0 was most 
unstable. 

There are some theoretical arguments which suggest that the axisymmetric 
disturbances ought to  be most dangerous. The effects of surface tension appear 
only in the normal-stress condition (5.14) a t  the interface and are in the form 
J(  1 - a2 -n2) where a is a positive real number and n is the azimuthal wavenumber. 
It is known that long waves are destabilized by surface tension ; for example, there 
is instability even with n = a = 0. For long-wave instability, J(l -a2-n2) > 0;  
hence, n = 0 (also a < 1). This instability, i t  turns out, is analogous to  a capillary 
instability and it is axisymmetric. On the other hand, short waves are stabilized by 
surface tension so that waves with n > 1 tend to be stable: the larger n, the greater 
the stability. Also, the fact that Squire's theorem holds for the plane analogue of our 
problem (Hesla, Prankh & Preziosi 1986) shows that two-dimensional disturbances 
in the plane of flow are most dangerous. Hence, axisymmetric disturbances may be 
most dangerous even when surface tension is not important. 
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8. Perturbation solution for long waves 
The stability problem can be solved explicitly in the limit of infinitely long waves 

(a-tO) in a power series of a using the method of Yih (1967). The axisymmetric 
problem can be obtained from (5.16a, c),  (5.17), (5.19a), (5.20), (5.22),  (5.23). The v- 
problem (5.16b),  (5.18), (5.19b), (5.21) is decoupled and gives rise only to stable 
eigenvalues. Thus, 

u(r,a) = u(o)(~)+au(1)(r)+O(a2) ,  (8.1) 

(8.2) C( a) = C(O) + a@) + O( 2). 

At zeroth order, we get 

1 - m  (a2- 1)2 G- (a4+m- l ) H  
m ( a 2 + m - i ) ( a 4 + m - 1 )  ’ 

At first order, C(1) = iR, 

where 
G = -2(3a2 + 2m- 3)  L1 - 3(8a2 + 5m- 8 )  p1 + 2(a6 + 3a2 + 3m-4) 4, 

+ 3(a8+ 8u2 + 6m-  9) a2 + (2a2 + m - 2 )  f ,  
H = (2a6 - 3a4 + 6a2 - 5 - 12 In a )  6, + (3a8 - 4a6 + 24a2 - 23 -48 In a )  b2 

A a 2 + m - i m  II 2a2+2m-2-mu2 a2 
a 1 = ~ 4 + r n - 1 2 4 ’  

” =  144(a2+m-1)’ ”= 144(a2+m-1)’ 

a2 = 

- m2 - 1  

(a2+m- 1) (a4+m- 1)  24 ’ 

A 

k =  (a2 + m - 1 )  (a4 + m - 1) 8 ( I  - 1) (a2 - 1 )2  (a4 + 2( m - 1) a2 - m + 1) 

To find points of the neutral curves for a = 0, put C(l) = 0 and solve for 

-___ 
16(1-m) 8 (a2+m- 1 )  (a4+m- 1) 

- - J 

2R3 1 - rn) 

8[(a4 +m- 1) Ha-  (a2- 1)2 Go] 
(a2 +m- 1)  (a4 +m- 1 )  [( -4a4 +mu2 -3m+4) (a2 - 1 )  + 41n a(a4 +m- I)]  

(5, - 1) (a2 - 1) [a4 + 2(m - 1 )  a2 - m + 13 
(a2 + m - 1)2 (a4 + m - 1)2 9 (8 .6)  + 

where Ha and Go are the same as H and G after I$ is put to zero 
The flow is unstable for long waves a = 0 when 

J* J* - = s > s, = -. 
U R f  U R :  

The coefficent of C2- 1 in (8 .6)  is positive whenever a > 1. Increasing the density of 
the liquid in the annulus stabilizes the flow against long waves when m < 1 and 
destabilizes when m > 1, but the effect is relatively weak. The effect of increasing the 
density of the liquid in the annulus destabilizes short waves when m < 1. Light 
lubricants are efficient against emulsification and heavy ones against capillarity. 
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The numbers on the 

We can write the criterion (8.7) for instability as 

R, < R,. 
A greater than critical amount of shearing (R, > R,) can stabilize capillary 

(8.9) 
instabilities. It is clear that 

Hence, RE = J*f (a ,  m)/a. (8.10) 

The lower critical Reynolds number varies with (J*) i ,  In figure 3, we show 
R,/(J*)i as a function of m with a as a parameter. For each value of a < 1.4889, 
the values of R, are finite for all m E [0,  1) and R, --f co as m + 1. When a > 1.5805, 
R, = co for all m E [ O ,  1). When 1.4889 < a < 1.5805, R,(a,m) is finite for some m 
and is infinite for others. We may define d(m) as the a such that 

R,(4(m), m) + co. (8.11) 

s, =f-l( a ,  m). 

A graph of d(m) is shown as figure 4. 
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m 
FIGURE 4. The value &(m) for which R,(a,m)+ 00. At m = 0.9999,a" = 1.5805. A t  m = 0.15, 

d = 1.4889. The region above the curve is unstable a t  any iw. 

U 

FIGURE 5. The best viscosity ratio &(a) for minimizing instability to long waves (a  = 0) 
according to (8.12). 
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FIQURE 6. Stability limit for long waves a+O defined by (8.12). When a = 1.5805. @a) = + co, 
%nd thy interface will undergo a capillary instability to long waves (a -+ 0) at any R,. At a = 1.55, 
R/(J*)r = 40.4. 

When a < 1.5805, there is a best viscosity ratio m = &(a) minimizing the region of 
instability to long waves : 

(8.12) 

The graph of &(a) is shown in figure 5 and the graph k(a) in figure 6, 
The solution just derived sets a correct standard for testing our pseudospectral 

numerical method. In all cases, we get four-place accuracy from the numerical 
method truncated at  N = 14. 

9. Comparison with results of Hooper & Boyd 
Hooper & Boyd (1983) have considered the linear theory of stability of an 

unbounded plane Couette flow with constant shear rates above and below a flat 
interface matched so that the shear stress is continuous. Their analysis is relevant 
locally in the limit of short waves, a + co, and it predicts universal instability in all 
cases in which surface tension vanishes. Surface tension can be included in their 
analysis for S small enough that 

a3s < O( 1) (9.1) 

as a --f 00. Surface tension stabilizes the short-wave instability. 
Renardy (1985) did a numerical study of plane Couette flow of two superposed 

liquids between parallel walls, and she found an instability which did not reduce to 
that of Yih (1967) as a+O or to that of Hooper & Boyd (1983). Hooper & Boyd 
(1987, hereinafter referred to as HB 1987) studied Renardy’s finite-a instability for 
shear flow of two fluids in a semi-infinite region above a flat plate using an 
asymptotic method and also a numerical evaluation of the secular equation arising 
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from an Orr-Sommerfeld type of analysis, using Airy functions. They characterized 
the a interval for the finite-a instability as 

Basically, this is a large R,, instability. 
The problem of HB (1987) looks locally like core-annular flow when the 

lubricating layer in the annulus is thin. However, the two problems are not 
comparable because of the effect of the curvature terms, which are probably of 
sccondary interest, and because their plane problem does not admit capillary 
instability. The first term in the surface-tension expression S( 1 - az )  is responsible for 
instability to long waves and i t  is absent in the plane problem. Surface tension in 
HB’s problem appears as -Sa2 and can only stabilize short waves. 

Useful formulas for frequencies and growth rates were derived by HB (1987), and 
they were able to identify the new instability with the viscous boundary layer at the 
wall. They note, however, that their asymptotic results are not uniform in the 
viscosity ratio pl/p2 and they fail in the limit pJpZ + 00 which is of interest for 
lubricated pipelining (cf. $10 of this paper). 

In  figure 7, we superimposed the results of our pseudospectral code on the 
numerical results computed by H B  and exhibited as figure 5 of their paper. The 
comparison requires that we identify the constant shears which represent the 
parabolic arcs of core-annular flow. When CL b 1 and S = 0, the instability is local in 
the sense of HB (1983). For this limit the choice of the local rate of shear a t  the 
interface is obligatory. 

There are some discrepancies between our results and H B  (1987), as can be seen 
from figure 7. To facilitate the explanation of these discrepancies, we shall need a list 
of conversion factors. We attach the subscript HB to the symbols used by HB 
(1987). 

GB m(aZ+m- 1 )  c - - - 
RHB 4 ( ~ - 1 ) ~  R ’  

Figure 7 is identical to figure 5 in HB (1987) except for the dots, crosses and squares 
which are values computed from our numerical program. The notation on figure 7 is 
as originally presented by HB (1987) except that we have assigned a subscript HB 
to all the symbols. 

The vertical bars on the curves hB = 0.1 and ~!3&~ = 0.00498 are a t  aLBkB = 1. 
Given the difference between our problem and HB’s problem the comparison for 
aLBkB < 1 suggests agreement. The difference between our results and those 
of HB vanish for large aHB when hB = 0. There is disagreement for large aHB when 

= 0.00498 and hB = 0.1 are computed 
from the short-wave formula given in the caption, which was derived in HB (1983), 

> 1 because the curves marked 



Lubricated pipelining : stability of core-annular $ow 34 1 

0.002 

0 

-0.002 

- 0.004 

-0.006 

-0.008 

-0.010 

-0.012 
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Asymptotic form for Im (CHB)/RHB when 
aHB % 1 

s,, = 0 - ~ H B  

* *  
S,, = 0.00498 

Asymptotic form for Im(CHB)/RHB 
when aHB % 1 

FIGURE 7. (After Hooper & Boyd 1987) I m G B / R H B  vs. aHB when mHB = 2 and pH, B 1 for 
different values of &,. The upper branch shown at each value of hB is the asymptotic form for 
I m  CHB/(WHB, which is 

The dots, crosses and squares are points computed from our pseudospectral code for CAF. See text 
for explanation. 

and the formula is not valid when aLBhB > 1. Evidently surface tension is much 
more stabilizing for short waves than is indicated by the asymptotic results of 
HB (1983). 

10. m + 0 for R, + 0 is a singular limit 
We have already mentioned that m = 0 is an important limit, for lubricated 

pipelining. Since m = ,u,/,uul, we get very small m when lubricating viscous crudes 
,ul = 1000 P with water ,u, = 1/100 P, m = lop5. 

Consider the axisymmetric problem (5.25), (5.26) and (5.27). The Reynolds 
number for the water R, appears only in the water equation (5.25) when 1 < r d a 
and R, = RJm. If R, + 0 and m + 0, the water equation is inviscid, 

r 4 4  - r 3 4  + (a2r2 + I )  r2u2 = 0, (10.1) 

two derivatives are lost. To solve this singular perturbation problem a t  zeroth order, 
it is necessary to discard certain boundary and interface conditions. The no-slip 
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condition .;(a) = 0 and (5 .27b)  are set aside. The shear-stress condition (5 .22)  
reduces to 

u:+u;+(a2-l)u,  = 0 ,  (10.2)  

which is an uncoupled condition on ul.  On the other hand, (5 .23)  reduces to 

u:+ 2 4 -  (f, + 3a2+  1) u; +fl 5, u; 

whereas (5 .24)  reduces to 

U: + 2 u ; - ( 3 a 2  + 1) U ;  +f,(<, - 1)  U; 

iaJ(a2 - 1) u1 - 
- 0.  (10.4)  

Rl(Wl)-c)  
+{f,(<,- i)-iaR1(<2- 1) W2(1) + 1 - a2}ul + 

These two equat,ions couple the flow in the water to the flow in the oil through terms 
proportional to ui, Equations (10.3)  and (10.4)  are equivalent when (5.27 b )  holds. If 
(5 .27b)  is discarded a b  initio, we are obliged to use (10.3) .  This is the form of the 
normal stress when the outer fluid is regarded as inviscid from the start and the 
continuity of the axial component of velocity ( 3 . 5 ) ,  which leads to (5 .27b) ,  is 
omitted. 

Equation (10.3)  decouples from the water when 5, = 0. Then (5 .25) ,  (10.2) and 
(10.3)  are enough to determine the family of eigenvalues given by Chandrasekhar 
(1961) in his study of capillary instability of a viscous jet. To identify ourproblem 
with his, we note that when m = 0 ,  W,(r) = 1. Then put R,(l-C) = C, which 
is equivalent to rcscaling the time. To complete thc formal identification of 
this problem with Chandrasekhar’s, put W, = v / R , .  In dimensionless variables, 
Chandrasekhar’s problem can be written as 

u, = - V p / p + V 2 u  on 0 < r < 1 

with u = S,, u,+w, = 0 ,  - p / p + 2 u r  = J(S,,+S,,+S) on r = 1. 

It follows that 8 depends on a wavenumber a and the surface-tension parameter J .  
The limit v + 0 ,  J+ 00 corresponds to an inviscid jet, leading to Rayleigh’s theory 
with maximum growth rate a t  di = 0.697.  The wavenumber d i (J ) ,0  < di < 1 which 
maximizes = ae(a ,  J) is an increasing function with &(m) = 0.697. For small J ,  
Chandrasekhar (1961) showed that to a good approximation v = T( 1 - a2)/6,u1 R,, 
hence, di(0) = 0. Small J corresponds to situations in which viscosity is paramount. 
The most dangerous wave for very viscous jets is very long. 

11. The limit R , + 0  and m 4= 0 
This is not a singular limit, R, = Rl/m tends to zero with R, and we get Stokes 

linearized equations in the oil and in the water. It is again appropriate to calculate 
eigenvalue C = (?/R,. Then, when R, + 0 ,  f, = - iaC and f, = - ia8/rn, (5.27 b )  
reduces to 

u; = ut at r = 1 

and the last term of (5 .273)  is replaced by 

-iaJ(a2- 1) u2/6 .  



Lubricated pipelining : stability of core-annular $ow 343 

\ 
\ 

\ \ 
\ 

\ 

\ \ 
\ 
\ ', 
\ 
\ , . 

- - - - _ _ _ _  - - -  '. c 

S 

0 1 2 3 4 5 6 7 
a 

FIGURE 8. Neutral curves aB,(a,m,J*), J* = 930, a = 1.15, m = 0.05 (---); m = 0.1 (-). The 
band of Reynolds numbers between the upper and lower critical branches is stable. 

This problem is independent of R, and also of & ( T ) ,  1 = 1,2, as it should be in the 
Stokes' flow limit. 

Surface tension J is stabilizing when a > 1 and destabilizing when a < 1. In all 
cases for which R, + O ,  we found core-annular flow (CAF) to be stable when a > 1 
and unstable when a < 1. This is shown clearly in figure 12 and in the neutral curves 
exhibited in $5 12 and 13. Values of Z(a, m, J )  of the fastest growing wave show that 
the Stokes' flow limit R, + 0 depends on a ,  m, J .  We recover the capillary instability 
of Chandrasekhar (1961) numerically by fixing m + R, + 0, and the capillary 
instability of Rayleigh (1879) by putting J +  00 when m/R, is small and R,+O. 

12. Neutral curves 
There are many different types of neutral curves. We have computed some 

representative types, shown in figures 8-10, and 12-16. The results given in $13 are 
a fairly complete representation of what linear theory has to say about the results 
described in figure 1. 

Figure 8 shows a fairly representative situation, with disjoint neutral curves, an 
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FIGURE 9. Pu’eutral curves R,(a,m,J*),  J* = 930, a = 1.25, m = 0.9 (-); m = 0.8 (-.-.-); 
m = 0.78 (0000); m = 0.75 ( - - - - ) ;  m = 0.7 (---). The stable band of Reynolds numbers 
disappears between m = 0.78 and m = 0.75. 

upper and lower branch. The lower branch is associated with long waves leading to 
capillary instability caused by surface tension a t  low Reynolds numbers. This region 
is in the bottom left-hand corner of the (a,  R,)-plane. It terminates on a = 1 for 
R, = 0. The values R, = Re as a function of a and m when a = 0 were given in $8. 
When a > 1.5805, disturbances with a = 0 are unstable a t  all R. We may define a 
critical stability limit for the lower branch : 

(12.1) 

The flow is unstable to generalized capillary instability when R, < R,. 
The upper branch of the neutral curve is associated with larger a,  shorter waves 

and larger Reynolds number. We may define a critical stability limit for the upper 
branch : 

Ru(a, m, J * )  = min ~ , , (a ,  m, J* ,  a) .  
a>O 

(12.2) 
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FIGURE 10. ru’eutral curves iW,(n,m,J*), J* = 930, n = 1.25. na = 0.01. The lower critical 
condition and upper critical condition have merged. Stable CAF is not possible. 

Coreannular flow (CAF) is unstable, evidently leading to emulsions when 

(12.3) 

we have stable CAP. 
The topology of the neutral curves can change with parameters. This is shown 

clearly in figure 9 which shows a change of topology leading to destruction of the 
upper and lower branches and the formation of left and right neutral branches for 
J* = 930, a = 1.25 for some m between 0.75 and 0.78. Left and right branches of the 
neutral curve R, is also shown in figure 10. 

In  figure 11, we have given a graphical representation of (12.3) for J* = 930, a = 
1.25 for different values of m. CAF is stable in the enclosed region of the figure. 

Figure 12 shows that increasing J* stabilizes short waves a > 1 and destabilizes 
long ones a < 1.  
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FIGURE 1 1 .  Upper &(m) and lower R,(m) critical Reynolds numbers for a = 1.25 and 
J* = 930. Coreannular flow is stable in the enclosed region. 

13. Comparison with experiments 
Now we shall compare the results of experiments of CGH (1961) with predictions 

of eigenvalues of the linear theory of stability. I n  their paper, they presented pictures 
of the flow in eleven different cases. These pictures are exhibited in figure 1. We have 
calculated neutral curves and growth rates for these eleven experiments. The neutral 
curves are exhibited in figures 13-16 and the growth rates for the fastest growing 
wave are listed in table 1.  

( 1 )  We used linear theory to predict the windows of operating parameters for 
stable CAF. 

(2) We used the neutral curves to identify the nature of the instability that should 
be observed in the experiments. We aim to discriminate between conditions in which 
they got bubbles and slugs of oil in water from those in which they got emulsions of 
water in oil. 

(3) We used the calculation of the length of the most rapidly growing wave to 
predict the length of slugs and bubbles that should arise from the capillary 
instability. 

In all eleven experiments, except Experiment 2, CAF is unstable in the experiments 
and in the theory. In  principle there is no reason why the flow observed under 
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FIQURE 12. Neutral curves in the (m, #)-plane for a = 1.4, rn = 0.5. Increasing S at a fixed R, is the 
same as increasing J .  Increasing J at fixed a and R, destabilizes long waves (a < 1) and stabilizes 
short waves (a > 1). 

Experiment Theory 

# a  Rl 4 X P  B r(&) 1 

3 1.42 69.80 4.5 (short 
7.5 (long slug) 

4 2.24 26.98 0.85 (bubble!' 

0.6 7.835 18 x 5.2665 

0.66 2.916 16 x lo-' 0.8596 
6 1.5 406.90 > 15:75 (slug) 0.22 5.85969 x 12.1856 
7 1.74 287.41 13.1 (slug) 0.08 2.34665 x lowa 21.4686 
8 2.80 134.50 0.69 (middle-most bubble) 0.61 5.23881 x 0.7060 

9 . 1.81 795.97 6.0 or > 15.75 (slug) 0.32 6.8402 x lo-* 4.7682 
66.3405 0.023 5.39895 x lo-* 

10 2.65 433.70 2.70 (longest slug) 0.11 1.82720~ lo-* 4.4199 
11 4.63 221.69 0.3125 (largest bubble) 0.64 2.41483 x 0.4202 

TABLE 1. Comparison of theory and experiment. The # refers to pictures shown in figure 1. 
u(a) = aC,(a) is the growth rate and B is the wavenumber of the fastest growing wave. 1R2 is the 
length of a slug or the radius of a bubble. 

unstable conditions should correlate with the predictions of a linear theory. The 
bubbles, slugs and emulsions seen in the experiments are not small perturbations of 
CAP. Nevertheless, the predictions of the linear theory do seem to correlate with 
observations. 

To apply the results of our stability calculation to the experiments, we need to 

i2 FLM 201 
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FIGURE 13. Neutral curves corresponding to Experiments 1 ,  2 :  a = 1.08,1.21; J* = 2102; m = 
0.0532. The horizontal lines correspond to the Reynolds number of the experiments. For 
Experiment 2, the minimum value R, = 138.2. Stable coreannular flow is observed with 88, = 
138.6. The maximum growth rate bc, (O i )  = 2.747 x occurs at a = b = 2.24. This flow is almost 
stable. 

convert data given in the experiment into parameters used in the analysis. The 
superficial velocities are the volume flow rate divided by the area of the pipe. From 
these flow rates and the values of material parameters, we may compute R, and 
W, for stable CAF. This fixes all of the dimensional, hence, dimensionless, parameters 
used in the analysis. The solution is carried out in c.g.s. units. The viscosity of water 
is given as 0.984 cP. For the oil viscosity (16.8 cP) listed in figure 1, we get m = 
0.0532. Carbon tetrachloride was added to the oil to increase the oil density. The 
density was matched, 5, = 1. The interfacial tension between the 16.8 cP  oil and 
water was measured by the method of capillary rise and is given as 45 dyne/cm. (The 
capillary rise method is not accurate and the evaporation of carbon tetrachloride 
makes it likely that the surface tension value is not accurate and could have changed 
by as much as 5 dynes/cm from experiment to experiment.) In all the cases exhibited 
in figure 1, water wets the wall of the cellulose acetate-butyrate. Let W,, be the 
superficial velocity of the oil (called V ,  in figure 1 )  and W,, the superficial velocity of 
water with 5 = Wls/ W,, from (2 .8)  and 

, t m 
w,=- w2s (1  +mi$ [m- 1 + (1 + m@]. (13.1) 

{ 1 +g+ (1 + m " y  
a =  
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FIGURE 14. Neutral curves corresponding to  Experiments 3, 5:  a = 1.42,1.31; J* = 2102; m = 
0.0532. Oil slugs in water are observed in Experiment 3. Water drops in oil are observed in 
Experiment 5 .  

Then, 
(13.2) 

The Jalues of the superficial velocities are given in figure 1. 
The comparisons between theory and experiments are made in figures 13-16 (in 

which the neutral curves corresponding to the 11 drawings shown in figure 1 are 
exhibited) and in table 1. The table gives the wavelength 01 = di corresponding to  the 
maximum growth rate 

diq(di) = max ImaC(a).  (13.3) 

= Bx/di and the dimensional 

a30 

The dimensionless wavelength corresponding to 2 is 
one is h1. 

The window of parameters for stable CAP may be expressed as an interval 

R, c R, < Ru (13.4) 

between the maximum R, on the lower branch of the neutral branch and the 
minimum 88, on the upper branch. Such an interval exists when the lubricating layer 
is small but not when it is large. Recall that  the flow is always unstable to long waves 

12-2 



350 

4ooa 

3000 

R, 

2000 

1000 

0 

L. Preziosi, K .  Chen and D. D. Joseph 

S 

1 2 3 4 5 6 7 
a 

FIGURE 15. Keutral curves corresponding to Experiment 7 :  a = 1.74, J* = 2102, m = 0.0532. Oil 
slugs in water are observed. For Experiments 9, 4, 10, 8, 11 (a  = 1.84,2.24,2.65,2.80,4.63, 
respectively) the neutral curves are very similar to the one shown here except for some scale 
changes. These other neutral curves are available from the authors on request. 

a + 0 when a > 1.5805. The minimum R, decreases rapidly as a is increased. We may 
describe this result in terms of a critical Reynolds number 

Re = (R,-R,) w, - %(a- 1) 
*1 m 

in the lubricating layer. The numerical results show that Re is a rather weak function 
of a and Re x 660. Hence, we get a weak approximation 

- ~ ~ 6 6 0  35.21 [w, - = __. 
(a-1) a-1 

On the other hand, the maximum value lkL on the lower critical branch is an 
increasing function of a-  1 (see figure 6). Hence, as a increases, the interval (13.4) 
shrinks; and the construction implied by the foregoing argument. shown in figure 17 ,  
indicates that CAF is always unstable under the experimental conditions (m = 
0.0532, J* = 2102) of the experiments of CGH when a > a,, where a, z 1.23. The 
same argument shows that CAF is more stable when the lubricating is thinner with 
maximal intervals (13.4) of stability as a + 1.  

CGH observed stable CAF in Experiment 2 and only in Experiment 2. The 
theoretical result for this experiment is shown in figure 13. The experiment lies very 
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FIQURE 16. Xeutral curves corresponding to Experiment 6 :  a = 1.50, J* = 2102, m = 0.0532. 
CAF plus water drops in oil are observed at W, = 40.7 

nearly in the stable band of Reynolds numbers with a weak short-wave instability 
(cf. growth rates, figure 13) in a narrow interval centred on a = 2.2. Very minor 
adjustments of the values of operating parameters, well within the errors expected 
of these experiments, would place the flow entirely within the stable band. All the 
other ten cases are unstable in the experiments and in the theory. 

We next consider category (2) of the comparison between theory and experiment. 
There are two cases and only two cases of emulsification of water into oil, shown in 
figure 1 as experiments 1 and 5, with associated neutral curves in figures 13 and 14. 
In both cases, we get an instability for high Reynolds number R,  > fkU above the 
upper critical, short-wave branch. 

The flows in all the other experiments ( 3 , 4 ,  6, 7 , 8 , 9 ,  10, 11) shown in figure 1 are 
unstable and the theory, exhibited in figures 14-16, show that the instability is to 
long waves and not to short waves. For these long-wave instabilities, there is always 
a wavelength = 27c/oi which maximizes the rate of growth (13.3) of an unstable 
wave. The length of slugs and bubbles of oil in water, shown in figure 1, can be 
compared with a theoretical value we get from computing &. The procedure we use 
is to identify the volume of a cylinder 
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FIGURE 17. Upper and lower stability limit as a function of a. for J* = 2102, m = 0.0532. CAP 
is never stable when a is larger than a E 1.23 at the point of intersection. 

of radius R, and length h1. We say that this volume is preserved in the nonlinear 
breakup of the oil, hence, is the same as the volume of slugs and bubbles observed 
in the experiments. (The words ‘oil drops’ used by CGH in Experiment 11 is a 
misnomer. Small oil bubbles are shown there.) If E is very small, then the wavelength 
is many times the circumference of the core. The oil in such a long wave can gather 
together to form something like a spherical bubble only if the pipe is large enough. 
Otherwise the bubble cannot collect into a closed spherical shape ; it takes form as a 
cylinder, perhaps long, which we call slug. Slugs and bubbles, like CAF, seem well 
lubricated by water at a radius something like a % 1.20, as in Experiments 3 , 6 , 7  and 
9. Hence, R w RJ1.20 and the volume (13.5) is equal to volume of the observed slug 
with area 7 ~ ( R ~ / l . 2 ) ~  and length IR,, 

(13.6) 

Hence 1 = 1.44i/aa = 2.887r/&a3. (13.7) 

The volume of observed bubbles is $b3. Equating this to  (13.5), we define 

(13.8) 
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We measured the length Zex,R, of observed slugs from the pictures in figure 1. The 
I,, give the number of pipe radii in the length of one slug and it can be compared 
with the 1 in (3.17). An identical measurement of the ratio of the bubble radius b to 
R, determines an lexp to compare with theoretical ratio in (13.8). 

Theory and experiment are compared in table 1, where we have identified the 
experiments by the numbers shown in figure 1. In the table, we list the value R,, the 
wavenumber d of the fastest growing wave, the growth rate 6 = &G(d) of this wave, 
the theoretical value 1 from (13.7) (for Experiments 3, 6 ,  7,  9 and 10) or (13.8) (for 
Experiments 4, 8 and 11)  and the measured value l,,,. The size of bubbles and slugs 
that can be observed in figure 1 under any particular operating condition is not 
unique. Since we compute a unique size based on the assumption of constant 
volumes, our comparison is only suggestive and not precise. Some remarks about the 
comparisons shown in table 2 are necessary. In  the table, we have identified which 
slug or bubble has been used for comparison. We do not know if the size of slugs and 
bubbles, so identified, is representative. For example, there may be a longer or 
shorter slug upstream or downstream of the section showing the single long slug 
exhibited in Experiment 7 of figure 1. In some of the experiments, like 6, 9 and 10, 
there is a great variability with different sizes and configuration occurring 
simultaneously. Only Experiment 2 of the three labelled ‘oil in water concentric’ 
seems to be associated with stable CAF. The other two, Experiments 6 and 9, are 
unstable to very long waves, leading to slugs whose lengths ( 12.186R2, 66.340R2) are 
nearly as long or longer than the 15.75R2 length of frames shown in the pictures of 
figure 1. We cannot distinguish such long slugs from ‘oil in water concentric’. A 
shorter slug can be identified in Experiment 9 of figure 1 as the region between the 
narrow black lines running from top to bottom. The smaller water bubbles shown in 
Experiments 6 and 9 and the oil bubbles in Experiment 10 are unexplained by this 
analysis. They could arise as a reaction to turbulence in the water, or as kind of 
secondary instability of slugs. 

14. Conclusions 
The analysis of the spectral problem of linear stability leads to the following 

conclusions : 
(1) Core-annular flow (CAF) is stable to disturbances with infinitely long 

wavelengths, a -+ 0 for some R, when the ratio a = R2/R, of the radius of the pipe to 
the mean radius of the interface does not exceed a critical value d(m) which depends 
on the viscosity ratio m = ,u2/pl < 1 alone (see figure 4) and 

1.4889 = d(0.15) < d < 6(l) = 1.5805. (14.1) 

(2) CAF is unstable to long waves a < 1 when the core Reynolds number R = 
When a > 6, CAF is unstable to waves a+O a t  any R,. 

Wo RJv ,  where W, is the centreline velocity, is smaller than a critical value 
* 

R L ( ~ ,  a, J*)  = max RCL(a, m, J* ,  a ) ,  
o>O 

(14.2) 

where RcL is the lower branch of the neutral curve (see figures 8-10, 13 and 14). This 
long-wave instability is induced by surface tension and is a generalized capillary 
instability which leads to the formation of oil slugs and bubbles in water. When 
a > 1.5805, this instability is always present. 

(3) The limit m+O, R, > 0 is singular and leads to inviscid flow in the water, 
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whereas the flow in the core reduces to the problem of capillary instability of a 
viscous jet which was studied by Chandrasekhar (1961). This problem depends on a 
surface-tension parameter J = J * / a  = TRJp, v:. When J + O ,  the wavelength 
of the disturbance with maximum growth tends to  infinity, when J+co then 
Chandrasekhar's problem reduces to Rayleigh's with a most dangerous a = 0.697. 

(4) Increasing J* stabilizes short waves a > 1 and destabilizes long ones a < 1.  
(5) The limit m > 0, R, + 0 is a Stokes flow limit. CAP is always unstable to long 

waves a < 1 and is always stable to short waves CL < 1 in this limit when J* > 0. 
(6) CAF is unstable to short waves when 

W, > h,(m, a, J*)  = min R,,(a, m, J*, a), (14.3) 

where W,, is the upper branch associated with shorter waves, a can be greater than 
one (see figures 8-10 and 13-15). Instability above the upper branch appears to  lead 
to emulsions of water in oil. The emulsions may arise as a second capillary instability 
after water fingers into oil. 

(7)  There is a window of parameters (a,m, J*)  such that CAF is stable; that is, 
there is an interval 

kL < W, < ku (14.4) 

of stable CAF. In this interval, we may say that capillary instability has been 
stabilized by shear. A section of such a w'ndow is shown in figure 12. This figure 
shows that there is an optimizing value of m x 0.5 which makes the stable interval 
(14.4) largest when J* = 930 and a = 1.25. 

(8) The density difference, without gravity, affects the stability of CAP, with 
opposite effects on the lower and upper branches. If we increase c2 = p2/p1 so that the 
fluid in the annulus is more dense, then R,, is decreased and there is a smaller region 
of generalized capillary instability; that is, the lower branch is more stable. The 
effect on the upper branch is opposite; increasing I&, decreases R,, increasing the 
region R, > R,, of instability. The destabilizing effect of increasing c2 on the upper 
branch is much greater than the stabilizing effect on the lower branch (see figure 
11.2). 

(9) The numerical results show that there is a critical Reynolds number in the 

u,o 

water 
Re = R,(a- l)/m. 

Hence, 
m 

a-1 
ku = -Re. 

In the experiment, Re x 660 is nearly independent of a for a < 1.42. Hence, 

R,W--& 35.2 

On the other hand, l'kL increases monotonically from zero when a = 1 to 00 a t  a 
finite a (cf. figure 6). It follows that the interval (13.4) of stable CAF is maximal 
0 < R, < 00, when a + i .  

(10) There is a critical value a = G(m, J*)  such that when a > 8, the interval (14.4) 
of stable CAP closes (see figure 9) and CAF is unstable. Moreover, 

&(m, J*)  < d(m). 
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For rn = 0.0532, J* = 2102, corresponding to experiments of CGH (1961), 

6 x 1.23 

355 

(see figure 17). It is arguable that one of the most important parameters in lubricated 
pipelining is the volume fraction of oil to water 

I n  the experiments, CAF is unstable when $ > 0.5376. The pictures of the 
experiments shown in figure 1 suggest that long slugs are stable in a lubricated flow 
with a x 1.2. 

(1  1) The linear theory of stability has shown that all the cases of emulsified water 
drops in oil seen in the experiments of CGH (1961), and only these cases, are a t  
Reynolds number exciting the short waves on the upper branch R, > @, and that 
long waves are not excited R, > hL (see figures 13 and 14). 
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